vllm.benchmarks.datasets
This module defines a framework for sampling benchmark requests from various datasets. Each dataset subclass of BenchmarkDataset must implement sample generation. Supported dataset types include: - ShareGPT - Random (synthetic) - Sonnet - BurstGPT - HuggingFace - VisionArena
zeta_prompt module-attribute
¶
zeta_prompt = "### Instruction:\nYou are a code completion assistant and your task is to analyze user edits and then rewrite an excerpt that the user provides, suggesting the appropriate edits within the excerpt, taking into account the cursor location.\n\n### User Edits:\n\n{}\n\n### User Excerpt:\n\n{}\n\n### Response:\n\n"
AIMODataset ¶
Bases: HuggingFaceDataset
Dataset class for processing a AIMO dataset with reasoning questions.
Source code in vllm/benchmarks/datasets.py
SUPPORTED_DATASET_PATHS class-attribute
instance-attribute
¶
SUPPORTED_DATASET_PATHS = {
"AI-MO/aimo-validation-aime",
"AI-MO/NuminaMath-1.5",
"AI-MO/NuminaMath-CoT",
}
sample ¶
sample(
tokenizer: PreTrainedTokenizerBase,
num_requests: int,
output_len: Optional[int] = None,
request_id_prefix: str = "",
**kwargs,
) -> list
Source code in vllm/benchmarks/datasets.py
ASRDataset ¶
Bases: HuggingFaceDataset
Dataset class for processing a ASR dataset for transcription. Tested on the following set:
+----------------+----------------------------------------+--------------------------+-----------------------------+ | Dataset | Domain | Speaking Style | hf-subset | +----------------+----------------------------------------+--------------------------+-----------------------------+ | TED-LIUM | TED talks | Oratory | release1, release2, release3| | | | | release3-speaker-adaptation | | VoxPopuli | European Parliament | Oratory | en, de, it, fr, ... | | LibriSpeech | Audiobook | Narrated | "LIUM/tedlium" | | GigaSpeech | Audiobook, podcast, YouTube | Narrated, spontaneous | xs, s, m, l, xl, dev, test | | SPGISpeech | Financial meetings | Oratory, spontaneous | S, M, L, dev, test | | AMI | Meetings | Spontaneous | ihm, sdm | +----------------+----------------------------------------+--------------------------+-----------------------------+
Source code in vllm/benchmarks/datasets.py
1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 |
|
SUPPORTED_DATASET_PATHS class-attribute
instance-attribute
¶
SUPPORTED_DATASET_PATHS = {
"openslr/librispeech_asr",
"facebook/voxpopuli",
"LIUM/tedlium",
"edinburghcstr/ami",
"speechcolab/gigaspeech",
"kensho/spgispeech",
}
TRANSCRIPTION_PREAMBLE class-attribute
instance-attribute
¶
sample ¶
sample(
tokenizer: PreTrainedTokenizerBase,
num_requests: int,
output_len: Optional[int] = None,
request_id_prefix: str = "",
**kwargs,
) -> list
Source code in vllm/benchmarks/datasets.py
BenchmarkDataset ¶
Bases: ABC
Source code in vllm/benchmarks/datasets.py
88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 |
|
random_seed instance-attribute
¶
__init__ ¶
__init__(
dataset_path: Optional[str] = None,
random_seed: int = DEFAULT_SEED,
) -> None
Initialize the BenchmarkDataset with an optional dataset path and random seed.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
dataset_path | Optional[str] | Path to the dataset. If None, it | None |
random_seed | int | Seed value for reproducible shuffling or | DEFAULT_SEED |
Source code in vllm/benchmarks/datasets.py
apply_multimodal_chat_transformation ¶
apply_multimodal_chat_transformation(
prompt: str,
mm_content: Optional[MultiModalDataDict] = None,
) -> list[dict]
Transform a prompt and optional multimodal content into a chat format. This method is used for chat models that expect a specific conversation format.
Source code in vllm/benchmarks/datasets.py
get_random_lora_request ¶
get_random_lora_request(
tokenizer: PreTrainedTokenizerBase,
max_loras: Optional[int] = None,
lora_path: Optional[str] = None,
) -> tuple[Optional[LoRARequest], AnyTokenizer]
Optionally select a random LoRA request and return its associated tokenizer.
This method is used when LoRA parameters are provided. It randomly selects a LoRA based on max_loras and retrieves a cached tokenizer for that LoRA if available. Otherwise, it returns the base tokenizer.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
tokenizer | PreTrainedTokenizerBase | The base tokenizer to use if no LoRA is selected. | required |
max_loras | Optional[int] | The maximum number of LoRAs available. If | None |
lora_path | Optional[str] | Path to the LoRA parameters on disk. If | None |
Returns:
Type | Description |
---|---|
tuple[Optional[LoRARequest], AnyTokenizer] | A tuple with the following elements: - A new [LoRARequest][] (or |
Source code in vllm/benchmarks/datasets.py
load_data ¶
Load data from the dataset path into self.data.
This method must be overridden by subclasses since the method to load data will vary depending on the dataset format and source.
Raises:
Type | Description |
---|---|
NotImplementedError | If a subclass does not implement this method. |
Source code in vllm/benchmarks/datasets.py
maybe_oversample_requests ¶
maybe_oversample_requests(
requests: list[SampleRequest],
num_requests: int,
request_id_prefix: str = "",
) -> None
Oversamples the list of requests if its size is less than the desired number.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
requests | List[SampleRequest] | The current list of sampled requests. | required |
num_requests | int | The target number of requests. | required |
Source code in vllm/benchmarks/datasets.py
sample abstractmethod
¶
sample(
tokenizer: PreTrainedTokenizerBase,
num_requests: int,
request_id_prefix: str = "",
) -> list[SampleRequest]
Abstract method to generate sample requests from the dataset.
Subclasses must override this method to implement dataset-specific logic for generating a list of SampleRequest objects.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
tokenizer | PreTrainedTokenizerBase | The tokenizer to be used for processing the dataset's text. | required |
num_requests | int | The number of sample requests to generate. | required |
Returns:
Type | Description |
---|---|
list[SampleRequest] | list[SampleRequest]: A list of sample requests generated from the |
list[SampleRequest] | dataset. |
Source code in vllm/benchmarks/datasets.py
BurstGPTDataset ¶
Bases: BenchmarkDataset
Implements the BurstGPT dataset. Loads data from a CSV file and generates sample requests based on synthetic prompt generation. Only rows with Model "GPT-4" and positive response tokens are used.
Source code in vllm/benchmarks/datasets.py
1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 |
|
__init__ ¶
_sample_loaded_data ¶
Source code in vllm/benchmarks/datasets.py
load_data ¶
Source code in vllm/benchmarks/datasets.py
sample ¶
sample(
tokenizer: PreTrainedTokenizerBase,
num_requests: int,
max_loras: Optional[int] = None,
lora_path: Optional[str] = None,
request_id_prefix: str = "",
**kwargs,
) -> list[SampleRequest]
Source code in vllm/benchmarks/datasets.py
ConversationDataset ¶
Bases: HuggingFaceDataset
Dataset for conversation data with multimodal support.
Source code in vllm/benchmarks/datasets.py
SUPPORTED_DATASET_PATHS class-attribute
instance-attribute
¶
sample ¶
sample(
tokenizer: PreTrainedTokenizerBase,
num_requests: int,
output_len: Optional[int] = None,
enable_multimodal_chat: bool = False,
request_id_prefix: str = "",
**kwargs,
) -> list
Source code in vllm/benchmarks/datasets.py
CustomDataset ¶
Bases: BenchmarkDataset
Implements the Custom dataset. Loads data from a JSONL file and generates sample requests based on conversation turns. E.g.,
{"prompt": "What is the capital of India?"}
{"prompt": "What is the capital of Iran?"}
{"prompt": "What is the capital of China?"}
Source code in vllm/benchmarks/datasets.py
851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 |
|
__init__ ¶
load_data ¶
Source code in vllm/benchmarks/datasets.py
sample ¶
sample(
tokenizer: PreTrainedTokenizerBase,
num_requests: int,
lora_path: Optional[str] = None,
max_loras: Optional[int] = None,
output_len: Optional[int] = None,
enable_multimodal_chat: bool = False,
skip_chat_template: bool = False,
request_id_prefix: str = "",
**kwargs,
) -> list
Source code in vllm/benchmarks/datasets.py
HuggingFaceDataset ¶
Bases: BenchmarkDataset
Base class for datasets hosted on HuggingFace.
Source code in vllm/benchmarks/datasets.py
SUPPORTED_DATASET_PATHS class-attribute
instance-attribute
¶
__init__ ¶
__init__(
dataset_path: str,
dataset_split: str,
no_stream: bool = False,
dataset_subset: Optional[str] = None,
**kwargs,
) -> None
Source code in vllm/benchmarks/datasets.py
load_data ¶
Load data from HuggingFace datasets.
Source code in vllm/benchmarks/datasets.py
InstructCoderDataset ¶
Bases: HuggingFaceDataset
InstructCoder Dataset. https://huggingface.co/datasets/likaixin/InstructCoder
InstructCoder is the dataset designed for general code editing. It consists of 114,239 instruction-input-output triplets, and covers multiple distinct code editing scenario.
Source code in vllm/benchmarks/datasets.py
SUPPORTED_DATASET_PATHS class-attribute
instance-attribute
¶
sample ¶
sample(
tokenizer: PreTrainedTokenizerBase,
num_requests: int,
output_len: Optional[int] = None,
enable_multimodal_chat: bool = False,
request_id_prefix: str = "",
**kwargs,
) -> list
Source code in vllm/benchmarks/datasets.py
MLPerfDataset ¶
Bases: HuggingFaceDataset
MLPerf Inference Dataset.
Dataset on HF: https://huggingface.co/datasets/mgoin/mlperf-inference-llama2-data https://huggingface.co/datasets/mgoin/mlperf-inference-llama3.1-data
Each record contains
- "system_prompt": system role instruction.
- "question": user question.
- "output": reference answer.
We combine the system prompt and question into a chat-formatted prompt (using the tokenizer's chat template) and set the expected output length to the tokenized length of the provided reference answer.
Source code in vllm/benchmarks/datasets.py
1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 |
|
SUPPORTED_DATASET_PATHS class-attribute
instance-attribute
¶
SUPPORTED_DATASET_PATHS = {
"mgoin/mlperf-inference-llama2-data",
"mgoin/mlperf-inference-llama3.1-data",
}
sample ¶
sample(
tokenizer: PreTrainedTokenizerBase,
num_requests: int,
output_len: Optional[int] = None,
request_id_prefix: str = "",
**kwargs,
) -> list[SampleRequest]
Source code in vllm/benchmarks/datasets.py
MTBenchDataset ¶
Bases: HuggingFaceDataset
MT-Bench Dataset. https://huggingface.co/datasets/philschmid/mt-bench
We create a single turn dataset for MT-Bench. This is similar to Spec decoding benchmark setup in vLLM https://github.com/vllm-project/vllm/blob/9d98ab5ec/examples/offline_inference/eagle.py#L14-L18
Source code in vllm/benchmarks/datasets.py
SUPPORTED_DATASET_PATHS class-attribute
instance-attribute
¶
sample ¶
sample(
tokenizer: PreTrainedTokenizerBase,
num_requests: int,
output_len: Optional[int] = None,
enable_multimodal_chat: bool = False,
request_id_prefix: str = "",
**kwargs,
) -> list
Source code in vllm/benchmarks/datasets.py
NextEditPredictionDataset ¶
Bases: HuggingFaceDataset
Dataset class for processing a Next Edit Prediction dataset.
Source code in vllm/benchmarks/datasets.py
MAPPING_PROMPT_FUNCS class-attribute
instance-attribute
¶
MAPPING_PROMPT_FUNCS = {
"zed-industries/zeta": _format_zeta_prompt
}
SUPPORTED_DATASET_PATHS class-attribute
instance-attribute
¶
sample ¶
sample(
tokenizer: PreTrainedTokenizerBase,
num_requests: int,
request_id_prefix: str = "",
**kwargs,
)
Source code in vllm/benchmarks/datasets.py
PrefixRepetitionRandomDataset ¶
Bases: BenchmarkDataset
Source code in vllm/benchmarks/datasets.py
1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 |
|
__init__ ¶
sample ¶
sample(
tokenizer: PreTrainedTokenizerBase,
num_requests: int,
prefix_len: int = DEFAULT_PREFIX_LEN,
suffix_len: int = DEFAULT_SUFFIX_LEN,
num_prefixes: int = DEFAULT_NUM_PREFIXES,
output_len: int = DEFAULT_OUTPUT_LEN,
request_id_prefix: str = "",
**kwargs,
) -> list[SampleRequest]
Source code in vllm/benchmarks/datasets.py
RandomDataset ¶
Bases: BenchmarkDataset
Source code in vllm/benchmarks/datasets.py
364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 |
|
__init__ ¶
sample ¶
sample(
tokenizer: PreTrainedTokenizerBase,
num_requests: int,
prefix_len: int = DEFAULT_PREFIX_LEN,
range_ratio: float = DEFAULT_RANGE_RATIO,
input_len: int = DEFAULT_INPUT_LEN,
output_len: int = DEFAULT_OUTPUT_LEN,
request_id_prefix: str = "",
**kwargs,
) -> list[SampleRequest]
Source code in vllm/benchmarks/datasets.py
SampleRequest dataclass
¶
Represents a single inference request for benchmarking.
Source code in vllm/benchmarks/datasets.py
multi_modal_data class-attribute
instance-attribute
¶
ShareGPTDataset ¶
Bases: BenchmarkDataset
Implements the ShareGPT dataset. Loads data from a JSON file and generates sample requests based on conversation turns.
Source code in vllm/benchmarks/datasets.py
455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 |
|
__init__ ¶
load_data ¶
Source code in vllm/benchmarks/datasets.py
sample ¶
sample(
tokenizer: PreTrainedTokenizerBase,
num_requests: int,
lora_path: Optional[str] = None,
max_loras: Optional[int] = None,
output_len: Optional[int] = None,
enable_multimodal_chat: bool = False,
request_id_prefix: str = "",
**kwargs,
) -> list
Source code in vllm/benchmarks/datasets.py
SonnetDataset ¶
Bases: BenchmarkDataset
Simplified implementation of the Sonnet dataset. Loads poem lines from a text file and generates sample requests. Default values here copied from benchmark_serving.py
for the sonnet dataset.
Source code in vllm/benchmarks/datasets.py
946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 |
|
__init__ ¶
load_data ¶
sample ¶
sample(
tokenizer,
num_requests: int,
prefix_len: int = DEFAULT_PREFIX_LEN,
input_len: int = DEFAULT_INPUT_LEN,
output_len: int = DEFAULT_OUTPUT_LEN,
return_prompt_formatted: bool = False,
request_id_prefix: str = "",
**kwargs,
) -> list
Source code in vllm/benchmarks/datasets.py
VisionArenaDataset ¶
Bases: HuggingFaceDataset
Vision Arena Dataset.
Source code in vllm/benchmarks/datasets.py
SUPPORTED_DATASET_PATHS class-attribute
instance-attribute
¶
SUPPORTED_DATASET_PATHS = {
"lmarena-ai/VisionArena-Chat": lambda x: x[
"conversation"
][0][0]["content"],
"lmarena-ai/vision-arena-bench-v0.1": lambda x: x[
"turns"
][0][0]["content"],
}
sample ¶
sample(
tokenizer: PreTrainedTokenizerBase,
num_requests: int,
output_len: Optional[int] = None,
enable_multimodal_chat: bool = False,
request_id_prefix: str = "",
**kwargs,
) -> list
Source code in vllm/benchmarks/datasets.py
_format_zeta_prompt ¶
_format_zeta_prompt(
sample: dict,
original_start_marker: str = "<|editable_region_start|>",
) -> dict
Format the zeta prompt for the Next Edit Prediction (NEP) dataset.
This function formats examples from the NEP dataset into prompts and expected outputs. It could be further extended to support more NEP datasets.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
sample | dict | The dataset sample containing events, inputs, and outputs. | required |
original_start_marker | str | The marker indicating the start of the editable region. Defaults to "<|editable_region_start|>". | '<|editable_region_start|>' |
Returns:
Type | Description |
---|---|
dict | A dictionary with the formatted prompts and expected outputs. |
Source code in vllm/benchmarks/datasets.py
add_dataset_parser ¶
add_dataset_parser(parser: ArgumentParser)
Source code in vllm/benchmarks/datasets.py
535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 |
|
get_samples ¶
get_samples(args, tokenizer) -> list[SampleRequest]
Source code in vllm/benchmarks/datasets.py
699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 |
|
is_valid_sequence ¶
is_valid_sequence(
prompt_len: int,
output_len: int,
min_len: int = 4,
max_prompt_len: int = 1024,
max_total_len: int = 2048,
skip_min_output_len_check: bool = False,
) -> bool
Validate a sequence based on prompt and output lengths.
Default pruning criteria are copied from the original sample_hf_requests
and sample_sharegpt_requests
functions in benchmark_serving.py, as well as from sample_requests
in benchmark_throughput.py.
Source code in vllm/benchmarks/datasets.py
lora_path_on_disk cached
¶
process_image ¶
Process a single image input and return a multimedia content dictionary.
Supports the following input types:
-
Dictionary with raw image bytes: - Expects a dict with a 'bytes' key containing raw image data. - Loads the bytes as a PIL.Image.Image.
-
PIL.Image.Image input: - Converts the image to RGB. - Saves the image as a JPEG in memory. - Encodes the JPEG data as a base64 string. - Returns a dictionary with the image as a base64 data URL.
-
String input: - Treats the string as a URL or local file path. - Prepends "file://" if the string doesn't start with "http://" or "file://". - Returns a dictionary with the image URL.
Raises:
Type | Description |
---|---|
ValueError | If the input is not a supported type. |
Source code in vllm/benchmarks/datasets.py
process_video ¶
Process a single video input and return a multimedia content dictionary.
Supports the following input types:
-
Dictionary with raw video bytes: - Expects a dict with a 'bytes' key containing raw video data.
-
String input: - Treats the string as a URL or local file path. - Prepends "file://" if the string doesn't start with "http://" or "file://". - Returns a dictionary with the image URL.
Raises:
Type | Description |
---|---|
ValueError | If the input is not a supported type. |